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Introduction

Several Social-Media Monitoring tools are

HLM
available for UGC analysis =
o Perceived as self-standing apps: ;’
no integration with corporate data SJ [t
You
[Tu0¢)

o Offered as-a-service: lack in sufficient
verticalization / personalization

° Project-oriented: narrow time-horizon,
limited historical depth

"Social Business Intelligence is the discipline that aims at combining
corporate data with user-generated content (UGC) to let decision-
makers analyze and improve their business based on the trends and
moods perceived from the environment."
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Introduction

In SBI, social media monitoring becomes an integrated DW process

o Cross-analysis between enterprise and social data is fundamental to properly
understand the impact of social events on the enterprise

o Social data become an asset of the company

The goal of our approach is to discuss the architectural options
available for an SBI project
o Help designers in finding the right cost-benefit compromise

Based on the experience of several real world projects, including:
o Collaboration with Amadori, Italian leader in poultry industry
o Regional project on monitoring vaccine-related discussions and fears
o Ministerial project on the analysis of the 2014 European elections
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Introduction: the project

The WebPolEU Project aimed at studying the connection between
politics and social media
o http://webpoleu.net

SBl is used as an enabling technology
for analyzing the UGC

o When: March 2014 to May 2014
(elections held on May 22-25, 2014)

o Where: Germany, Italy, United Kingdom

Around 10 millions clips collected

o Facebook posts, tweets, blogs and forum
posts, news feeds and comments, etc.
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SBI architecture: classification

In an SBI architecture, the roles of each component may vary from
project to project
o Design complexity and control level by the user may vary

Off-the-Shelf solution Low skills
. . Low control
> Adopt a full solution, supporting a set Fast setup
of standard reports and dashboards
End-to-End solution
° Acquire and tune an end-to-end
software / service
Best-of-Breed solution
o Acquire specialized tools in one High skills High control
or more parts of the process Slow setup
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SBI architecture: reference

A reference architecture for SBI has been proposed in [2]
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o [2] M. Francia, M. Golfarelli, S. Rizzi. A methodology for social Bl. In Proc. IDEAS, pp 207-216,
2014
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SBI architecture: WebPolEU

( No CRM and no EDW are
present in WebPolEU ) :
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SBI architectural options ¥’ "
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Context

o The main burden is in ensuring a good compromise between too much / too
little content

Considerations
o Off-the-shelf: the designer only carries out macro analysis

o End-to-end: clipping is guaranteed by the service provider, querying is
controlled by the designer

o Best-of-breed: all technical activities are in charge
of the designer; potentially burdensome and very time-consuming

In WebPolEU
o Crawling process relies on Brandwatch, a third-party service (end-to-end)
o It also extracts metadata (source, author, etc.) and derives clip sentiment
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SBl architectural options % 5
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Semantic enrichment  aemsg

Context
o A wide spectrum of technological alternatives

Considerations
o Basic techniques may be sufficient to analyze raw data
° e.g., count topic occurrences
NLP analysis techniques are powerful but potentially expensive
° e.g., extract lemmas, semantic relationships between lemmas, more detailed sentiment

For inherently complex languages (e.g., German), automated analysis and
interpretation of sentences is discouraged

o

o

In WebPolEU

Semantic enrichment is achieved as the combination of both basic and advanced
techniques

NLP analysis is carried out by the commercial system SyN Semantic Center
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ODS (Operational Data Store) & sg

Context
o The ODS component is not strictly necessary

Considerations
o ODS is actually recommended
o Buffering and early analysis (separate crawling from semantic enrichment)
o Clip reprocessing (semantic enrichment is an iterative process)
o Data cleaning (more effective on materialized data rather than on-the-fly)
o Relational or NoSQL?
o NoSQL guarantees scalability
o Transactional workload is better handled with ACID properties
o Metadata processing also favors a well-defined, normalized schema

In WebPolEU
o An RDBMS is used; a NoSQL repository is only used to enable text search
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SBIl architectural options =
Analysis

Context

o Analysis is a key component of SBI architectures; it can take a variety of
shapes, with quite different capabilities

o Dashboards: small number of predefined views and navigations

m @HG%‘E

o Text search: detailed analysis up to the single UGC level
o Text mining: advanced analyses (e.g., clip clustering, topic discovery)
o OLAP: flexible analysis on the multidimensional metaphor

Considerations
o Off-the-shelf solutions: dashboards and text search, rarely text mining
o OLAP capabilities are clearly more powerful, but also complex to provide

In WebPolEU
o Dashboards, text search and OLAP capabilities are enabled
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Analysis (WebPolEU) wme =g

Clip hierarchy: built with metadata from the crawling service
Fact: occurrence of a topic within a clip
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Analysis (WebPolEU)

The topic hierarchy is built from the - A
domain ontology and modeled using QO O

an advanced technique, specific

for topic hierarchies etttional N fole
(meta-stars) [4] @] (@Nation

Citizen vs Politician Sector

Office EU Y/N
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Media vs On-the-Ground Institution
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o [4] E. Gallinucci, M. Golfarelli, S. Rizzi. Advanced topic modeling for social business intelligence.
Information Systems, pp. 53:87-106, 2015.
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Case study: effectiveness

Comparison of the two semantic enrichment techniques

Topic occurrences in the clips Advanced: SyN semantic engine
Basic: in-house procedure

In most cases, the two techniques
find the same topic occurrences
° Basic techniques could be
sufficient for KPIs based on topic
counting

Advanced Basic only: o Sophisticated ontology-based
only: 1,9 M 3,5M techniques are required for
deeper analyses (e.g., semantic

(English dataset only) co-occurrences)
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Case study: effectiveness
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Advanced Basic
(English dataset only)

Clip sentiment comparison

Agreed

Comparison of the two semantic enrichment techniques

Advanced: SyN semantic engine
(lexical analysis of the sentences)
Basic: Brandwatch service
(rule-based technique)

Brandwatch hardly assigns a non-
neutral sentiment to a clip

o Due to its inability / caution in
assigning a non-neutral sentiment

Case study: efficiency

Average ETL times

Basic sem. enrich.: 20 msec/clip
Advanced sem. enrich.: 1,6 sec/clip

‘ Crawling to ODS: 0,3 sec/clip ‘
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IR cubes: 1,3 msec/clip
------- NLP cubes: 6,8 msec/clip
Document DB: 1,6 msec/clip
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Case study: sustainability

The design of the architecture is an iterative task
o First design iteration: 84 person-days
o Second design iteration: 30 person-days

Main critical issues:

o Ontology design: correctness of the results is deeply affected by the
completeness of the domain ontology

o Crawling setup: proper formulation within the boundaries set by the service
provider (e.g., number of queries, query length) may become a nightmare

o ETL & OLAP design: continuous tuning required to handle all possible
unexpected results due to bad clipping
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Conclusion

Rules of thumb

o The adoption of sentiment analysis should be carefully evaluated
o Aside from specific sources/closed domains, sentiment accuracy easily drops

o Twitter is possibly the best source for sentiment analysis
o Due to the shortness of tweets and the high percentage of opinions

o Off-the-shelf solutions only provide quick-and-dirty answers
o To pursued only with limited available resources or at early stages

o OLAP analysis has been recognized as truly valuable by the WebPolEU users
o Full OLAP capabilities will increasingly be provided as SBI gradually gain importance

WebPolEU data is going to be released as a benchmark for SBI

o The goal is to enable the possibility to test every task of the SBI process,
thanks to expert-validated ground truth
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Architectural options -
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Architecture: specifications
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Case study: effectiveness

Clip sentiment accuracy
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mNLP mIR --random classifier (33%)
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o Sample of 600 English clips, manually tagged by domain experts
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Case study: effectiveness

Clip sentiment accuracy
o Sample of 600 English clips, manually tagged by domain experts
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